ERTMS Regional and North American Dark Territory: A Comparison

George Raymond	Independent Consultant Railweb GmbH Switzerland
Ron Lindsey	Independent Consultant Communication Architecture USA
Jörn Pachl	Professor Braunschweig Technical University Germany

IRSE ASPECT conference, London, 11 September 2012

Recent advances in traffic control

	Europe	North America (later I+I ?)
Recent advance	European Train Control System (ETCS)	Positive Train Control (PTC)
Principal rationale	Interoperability between national rail networks	Increased safety by preventing driver errors
Transmission of movement authority	ETCS	Legacy traffic control system
Enforcement of movement authority	ETCS	PTC, as overlay system

North American signalled operations

- About half of North American route-km
- Track circuits prove train integrity
- Dispatchers manage signals under centralised traffic control (CTC) New: Positive train control (PTC) enforces movement authorities from 2015

Dark territory operations

- About a third of North American route-km
- No lineside signals (except for simple status e.g. of turnouts)
- No track circuits
- Dispatcher issues track warrants (movement authorities) by voice (or data) radio New: Positive train control (PTC) enforces movement authorities from 2015

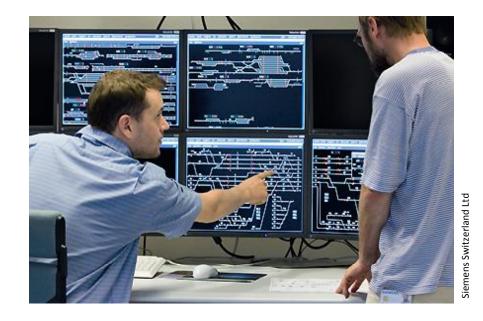
(3) David W. Dupler

"Light dark" territory

- Hybrid between signalled and dark territory
- About one-sixth of North American network
- Like dark territory: dispatcher issues movement authorities by voice/data radio
- Like dark territory: End-of-train devices prove train integrity
- Automatic block signals (ABS) not under dispatcher management New: Positive train control (PTC) enforces movement authorities from 2015

⁽³⁾ Dick Tinder, Virtual Train Watching in Iowa

London, 11 September 2012


Dispatching

Signalled territory in Europe

(and half of North America's route-km)

North American dark territory

- Conflict-checking software
- Photo: Kansas & Oklahoma Railroad (1300+ km)

ETCS Level 1

- Track circuits or axle counters
- Active transponders transmit authorities

ETCS Level 2

- Track circuits or axle counters
- Passive transponders
- GSM-R radio transmits authorities

ETCS Level 3

ERTMS Regional

First implementation on 143-km Västerdalsbanan in Sweden in February 2012

- Passive transponders
- GSM-R radio transmits
 authorities
- No track circuits or axle counters
- On-board train integrity
 proving

Solutions for lines with low traffic density

Europe	North America
ERTMS Regional	Dark territory
Application of ETCS Level 3	Dispatcher-issued track
• First implemented in Sweden in 2012	warrants
	 Now being equipped with
	Positive Train Control (PTC)

ERTMS = European Rail Traffic Management System

In both solutions:

- Conventional signalling absent
- No track circuits or axle counters
- Transmission of movement authority information by radio
- On-board train integrity proving

Rationale for automatic train protection (ATP) to enforce movement authorities

	Europe	North America
Average train speed and density	Higher	Lower
Dominant traffic	Passenger	Freight
	Oliver Jaeschke	Eric Has
Automatic train protection (ATP)	Standard	Justified only on lines with significant passenger traffic
		Stephen Bradley

Design philosophy

Movement authorities	Europe	North America
Issuance and transmission	Vital design	→
Enforcement	↓	Non-vital design

In North America, the designers of positive train control (PTC) are seeking an optimal solution:

Evaluation of technologies

	ERTMS Regional / ETCS Level 3	Dark territory with PTC
End-of-train devices prove train integrity	★(✓)	\checkmark
Track vacancy proving other than with track circuits and axle counters	★(✓)	\checkmark
Satellite positioning	★(✓) Need Galileo's self- checking	GPS is OK
Turnout position helps indicate which track a train is on	×	✓
Transponders between rails	\checkmark	×

A possible path for other continents (1)

Compared to conventional signalling, the European ERTMS Regional and North American Dark Territory wireless solutions for low-density lines offer:

- Less line-side equipment needing maintenance and exposed to damage, theft and vandalism
- Lower capital investment
- Scalability as traffic grows

A possible path for other continents (2)

Once wireless infrastructure is in place, a developing railway can implement the following models without significant added investments as traffic grows:

- 1. Dark territory
- 2. Dark territory with PTC or ERTMS Regional
- 3. Centralised traffic control (CTC) based on virtual positioning

Co-author Ron Lindsey is structuring a Virtual CTC + Enforcement solution for the Egyptian National Railways.

Thank you from both sides of the Atlantic!

George Raymond	Independent Consultant, Railweb GmbH, Switzerland
Ron Lindsey	Independent Consultant, Communication Architecture, USA
Jörn Pachl	Professor, Braunschweig Technical University, Germany

London, 11 September 2012

ERTMS Regional and North American Dark Territory: A Comparison G. Raymond, R. Lindsey and J. Pachl

Siemens Switzerland Ltd